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One of the main elements of the self-consistent generalized Langevin equation �SCGLE� theory of colloid
dynamics �Phys. Rev. E 62, 3382 �2000�; 72, 031107 �2005�� is the introduction of exact short-time moment
conditions in its formulation. The need to previously calculate these exact short-time properties constitutes a
practical barrier for its application. In this Brief Report, we report that a simplified version of this theory, in
which this short-time information is eliminated, leads to the same results in the intermediate and long-time
regimes. Deviations are only observed at short times, and are not qualitatively or quantitatively important. This
is illustrated by comparing the two versions of the theory for representative model systems.
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In recent work a new first-principles theory of dynamic
arrest has been proposed �1,2�. This consists essentially of
the application of the self-consistent generalized Langevin
equation �SCGLE� theory of colloid dynamics �3–6� to the
description of the singular behavior characteristic of dynamic
arrest phenomena in specific colloidal systems and condi-
tions. The SCGLE theory was originally devised to describe
tracer and collective diffusion properties of colloidal disper-
sions in the short- and intermediate-times regimes �7,8�. Its
self-consistent character, however, introduces a nonlinear dy-
namic feedback, leading to the prediction of dynamic arrest
in these systems, similar to that exhibited by the mode cou-
pling theory �MCT� of the ideal glass transition �9�. The
resulting theory of dynamic arrest in colloidal dispersions
was applied in recent work to describe the glass transition in
three monodisperse experimental model colloidal systems
with specific �hard-sphere, screened electrostatic, and deple-
tion� interparticle effective forces �1,2�. The results indicate
that the SCGLE theory of dynamic arrest has the same or
better level of quantitative predictive power as conventional
MCT, but is built on a completely independent conceptual
basis, thus providing an alternative approach to the descrip-
tion of dynamic arrest phenomena.

There is, however, a possible practical disadvantage of the
SCGLE with respect to the MCT, and it refers to the fact that
the MCT only requires the static structure factor of the sys-
tem as an external input, whereas the SCGLE theory requires
this information plus other additional static properties in-
volved in the exact short-time conditions that the theory has
built-in �5�. As it happens, however, the long-time
asymptotic solutions of the relaxation equations that consti-
tute the SCGLE theory are independent of such exact short-
time properties �2�. The questions then arise of whether a
simplified version of the SCGLE theory, in which this short-
time information is eliminated, could be proposed, and to
what extent such a simpler theory will still provide a reliable
representation of the dynamics of the colloidal system not
only in the asymptotic long-time regime, but also at earlier
stages. In what follows we demonstrate that there is a simple
manner to build this simplified version of the SCGLE theory,
and that it is virtually as accurate as the full version, even in

the short- and intermediate-time regimes. This finding will
greatly simplify the application of the SCGLE theory of dy-
namic arrest.

Let us summarize the four distinct fundamental elements
of the full self-consistent generalized Langevin equation
theory of colloid dynamics. The first consists of general and
exact memory-function expressions for the intermediate scat-
tering function F�k , t� and its self-component FS�k , t�, de-
rived with the generalized Langevin equation �GLE� formal-
ism �10�, which in Laplace space read �3�

F�k,z� =
S�k�

z +
k2D0S−1�k�
1 + C�k,z�

, �1�

FS�k,z� =
1

z +
k2D0

1 + CS�k,z�

, �2�

where D0 is the free-diffusion coefficient, S�k� is the static
structure factor of the system, and C�k ,z� and CS�k ,z� are the
corresponding memory functions.

The second element is an approximate relationship be-
tween collective and self-dynamics. In the original proposal
of the SCGLE theory �3�, two possibilities, referred to as the
additive and the multiplicative Vineyard-like approxima-
tions, were considered. The first approximates the difference
�C�k , t�−CS�k , t��, and the second the ratio �C�k , t� /CS�k , t��,
of the memory functions, by their exact short-time limits,
using the fact that the exact short-time expressions for these
memory functions, denoted by CSEXP�k , t� and CS

SEXP�k , t�,
are known in terms of equilibrium structural properties
�5,11�. The multiplicative approximation was devised to de-
scribe more accurately the very early relaxation of F�k , t� �6�,
but the additive approximation was found to provide a more
accurate prediction of dynamic arrest phenomena �2�. In this
paper, for “full SCGLE theory” we refer to the theory that
involves the additive Vineyard-like approximation,
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C�k,t� = CS�k,t� + �CSEXP�k,t� − CS
SEXP�k,t�� . �3�

The third ingredient consists of the independent approximate
determination of FS�k , t� �or CS�k , t��. One intuitively expects
that these k-dependent self-diffusion properties should be
simply related to the properties that describe the Brownian
motion of individual particles, just like in the Gaussian ap-
proximation �7�, which expresses FS�k , t� in terms of the
mean-squared displacement �MSD� (�x�t�)2 as FS�k , t�
=exp�−k2(�x�t�)2 /2�. We introduce an analogous approxi-
mate connection, but at the level of their respective memory
functions. The memory function of (�x�t�)2 is the so-called
time-dependent friction function ���t�. This function, nor-
malized by the solvent friction �0, is the exact long wave-
length limit of CS�k , t�, i.e., limk→0 CS�k , t�=����t�
����t� /�0. Thus, we interpolate CS�k , t� between its two
limits, namely,

CS�k,t� = CS
SEXP�k,t� + �����t� − CS

SEXP�k,t����k� , �4�

where

��k� � �1 + �k/kc�2�−1 �5�

is a phenomenological interpolating function, with kc being
the position of the first minimum that follows the main peak
of S�k� �5�.

The fourth ingredient of our theory is another exact result,
also derived within the GLE approach �10�, this time for
����t�. This exact result may, upon a well-defined simplify-
ing approximation, be converted into the following approxi-
mate but general expression �2�:

����t� =
D0

3�2��3n
� dk� k�S�k� − 1�

S�k� �2

F�k,t�FS�k,t� . �6�

Equations �1�–�6� constitute the full SCGLE theory of col-
loid dynamics. Besides the unknown dynamic properties, it
involves the equilibrium properties S�k�, CSEXP�k , t�, and
CS

SEXP�k , t�, determined by the methods of equilibrium statis-
tical thermodynamics. We should also point out that Eqs. �1�
and �2� are exact results, and that Eq. �6� derives from an-
other exact result. Hence it should not be a surprise that the
same results are used by other theories; in fact, the same
equations are employed in MCT. The difference lies, of
course, in the manner we relate and use them. In this sense,
the distinctive elements of the SCGLE theory are the
Vineyard-like approximation in Eq. �3� and the interpolating
approximation in Eq. �4�.

The simplified version of the SCGLE theory is now sug-
gested by the form that these distinctive equations �Eqs. �3�
and �4�� attain for times longer than the relaxation time of the
functions CSEXP�k , t� and CS

SEXP�k , t�. Under those conditions,
Eqs. �3� and �4� become, respectively,

C�k,t� = CS�k,t� �7�

and

CS�k,t� = �����t����k� . �8�

It is not difficult to see that the original self-consistent set
of equations �involving Eqs. �3� and �4�� shares the same

long-time asymptotic stationary solutions as its simplified
version. Such stationary solutions are given by �2�

lim
t→�

F�k,t� =
��k�S�k�

��k�S�k� + k2�
S�k� �9�

and

lim
t→�

FS�k,t� =
��k�

��k� + k2�
, �10�

where � is the solution of the following equation:

1

�
=

1

6�2n
�

0

�

dk k4 �S�k� − 1�2�2�k�
���k�S�k� + k2�����k� + k2��

. �11�

The parameter � is the long-time asymptotic value of the
MSD, i.e., �� limt→�(�x�t�)2. In the arrested states, this pa-
rameter is finite, representing the localization of the particles,
whereas in the ergodic states it diverges.

It is then natural to ask what the consequences would be
of replacing Eqs. �3� and �4� of the full SCGLE set of equa-
tions by the simpler approximations in Eqs. �7� and �8� that
no longer contain the functions CSEXP�k , t� and CS

SEXP�k , t�.
Our proposal of a simplified version of the SCGLE theory
consists precisely of this replacement, so that the “simplified
SCGLE theory” consists of the exact results in Eqs. �1� and
�2� along with Eqs. �5� and �6�, complemented by the closure
approximations in Eqs. �7� and �8�.

We have made a systematic comparison of the various
dynamic properties involved in the SCGLE theory, including
the intermediate scattering function F�k , t�, its self-
component FS�k , t�, and other tracer-diffusion properties
such as the time-dependent friction function ����t�, the
mean-squared displacement or the time-dependent diffusion
coefficient D�t�� (�x�t�)2 /2t. As expected, the scenario of
dynamic arrest exhibited by this simpler theory is identical to
that provided by the full SCGLE scheme. This is probably
not surprising since, as indicated above, both sets of dynamic
equations share the same long-time asymptotic behavior and
the same asymptotic stationary solutions. What is surprising,
however, is the degree of accuracy of the simplified theory in
the short- and intermediate-time regimes. In our systematic
comparison we considered systems with soft-sphere, hard-
sphere, and repulsive Yukawa interactions, systems with at-
tractive �Yukawa� interactions, systems in three and in two
dimensions, and both monodisperse and bidisperse systems,
in all cases with similar conclusions, that we illustrate with
the following examples.

Thus, in Fig. 1 we plot the intermediate scattering
function F�k , t� as a function of time, evaluated at the
position kmax of the first maximum of the static structure
factor of a soft-sphere system. The pair potential, in
units of the thermal energy kBT=�−1, is given by �u�r�
=1 / �r /	�2
−2 / �r /	�
+1 for 0�r�	, and it vanishes for
r�	. The system in Fig. 1 corresponds to 
=18 and to the
volume fractions ��n	3 /6=0.515, 0.60, 0.612, and
0.613. The static structure factor was calculated using the
prescription of Verlet and Weis �12�. The results correspond
to the simplified version, and to the full version, of the
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SCGLE theory. The very first feature to notice is the virtual
coincidence of the results of these two approximations; in
fact, only for =0.515 the difference is appreciable. For the
other volume fractions the results are not distinguishable in
the scale of the figure, and this includes the vicinity of the
glass transition which, as can be seen in the figure, is pre-
dicted to occur at g=0.613 for this soft-sphere system. For
=0.515 we also show the Brownian dynamics data and the
results of the SCGLE theory within the multiplicative
Vineyard-like approximation, both reported in Ref. �6�, to
recall the fact that the multiplicative approximation some-
times provides a slightly more accurate quantitative descrip-
tion of the initial relaxation of F�k , t� �see the inset�. In a
longer time scale, as indicated in the main figure, the predic-
tion of the overall relaxation provided by the SCGLE theory
complemented with the additive and the multiplicative ap-
proximations is quite similar. Furthermore, as discussed in
Ref. �2�, the additive approximation provides a simpler and
more accurate description of dynamic arrest, partly because
these phenomena do not seem to depend strongly on the
short-time behavior illustrated in the inset of Fig. 1. Thus,
from now on, we shall omit further reference to the multipli-
cative approximation.

A similar situation is illustrated in Fig. 2, this time
for a system of colloidal particles interacting through a
hard-sphere potential of diameter 	 plus an additional
long-ranged repulsive Yukawa tail of the form �u�r�
=K exp�−z�r /	−1�� / �r /	�, with z=0.15 and K=500. For a
volume fraction 1=4.4�10−4, it corresponds to the condi-
tions of Fig. 1 of Ref. �14�. In our present figure, however,
we compare the full and the simplified SCGLE theory
for the time-dependent diffusion coefficient D�t� and for the

intermediate scattering functions F�k , t�, Fs�k , t�, and
Fd�k , t���F�k , t�−Fs�k , t�� in the short-time regime, where
these differences are expected to be larger. Our present com-
parison indicates that the new simplified version of the
SCGLE theory leads to essentially identical results, even in
these time regimes.

Just like the MCT has been extended to mixtures �13�, the
SCGLE has also been extended to multicomponent colloidal
systems �14,15�. Also in this case the simplified version of
the SCGLE theory provides virtually the same description as
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FIG. 1. F�k , t� as a function of time �in units of t0�	2 /D0� at
the position kmax of the first maximum of S�k� of a soft-sphere
system with 
=18 and volume fractions =0.515, 0.60, 0.612, and
0.613. For =0.515 we show Brownian dynamics data �solid
circles� and the results of the simplified �solid line� and the full
�dashed line� versions of the SCGLE theory, and of the SCGLE
theory with the multiplicative approximation �dot-dashed line�; the
inset is a closeup of the short-time relaxation of F�k , t�. For the
other volume fractions we only show the indistinguishable results
�solid curves� of the simplified and the full SCGLE theory.
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FIG. 2. �a� Time-dependent diffusion coefficient D�t� and inter-
mediate scattering functions, �b� Fs�k , t�, �c� Fd�k , t�, and �d� F�k , t�,
of a repulsive Yukawa system with z=0.15, K=500, and
=4.4�10−4. Results of the simplified SCGLE theory for the in-
termediate scattering functions are shown for times t= t0 �dashed
curves� and t=10t0 �solid lines�. The solid circles are Brownian
dynamics data of Ref. �14�. The full SCGLE theory is not shown
since it completely coincides with the BD data.
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FIG. 3. Time-dependent diffusion coefficients as a function of
time �D1�t�, solid lines; D2�t�, dashed lines� and total intermediate
scattering functions F���k , t� ��=1,2� of a repulsive Yukawa mix-
ture with z=0.15, K1=100, and K2=500 for t= t0 �dashed lines� and
t=10t0 �solid lines�. The volume fraction of the more interacting
species is kept fixed at 2=2.2�10−4 and 1 takes the values
1=7.25�10−5 �left column�, 2.2�10−4 �center column�, and
6.6�10−4 �right column�. The F���k , t� of the full SCGLE theory,
not shown, completely coincide with the BD data.
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the full SCGLE scheme, but its practical application is far
simpler. In Fig. 3 a comparison is presented for a
binary Yukawa mixture, with pair potential �uij�r�
=	KiKj exp�−z�r /	−1�� / �r /	� �1� i , j�2� in which a
fraction x1 of the particles �species 1� interact with a charge
parameter K1=100 and the other fraction x2 �species 2� with
K2=500. The volume fraction of the more interacting species
is kept fixed at 2=2.2�10−4 and 1 takes the values
6.6�10−4 �right column�, 2.2�10−4 �middle column�, and
7.25�10−5 �left column�, corresponding to x1=0.75,
x1=0.5, and x1=0.25. This figure corresponds to the same
conditions as Fig. 3 of Ref. �15� and, as in our previous
example, the simulated S�k� was employed. It simply con-
firms the general conclusions of this Brief Report, namely

that the simplified SCGLE theory provides a description of
the relaxation of concentration fluctuations in colloidal sus-
pensions qualitatively and quantitatively virtually identical to
the full SCGLE theory. Its practical implementation, how-
ever, is much simpler than either the full SCGLE or the MCT
schemes. This has simplified the application of the SCGLE
theory to the discussion of dynamic arrest in colloidal mix-
tures �16� and in colloidal fluids adsorbed in model porous
media �17� that we report in separate papers.
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